
A Generalized Method of Differential
Fault Attack Against AES Cryptosystem

Sharif University of Technology, Tehran, Iran
Amir Moradi, Mohammad T. Manzuri,

Mahmood Salmasizadeh

Sharif University of Techology 2

Outline

● History of DFA
● The proposed fault models
● The attack schemes that use our fault models
● Empirical results
● How we can use this approach to break AES

without fault injection?
● Future works

Sharif University of Techology 3

History

● The first time, researchers of Bellcore in 1996
introduced a new attack method based on
computational errors in implementation of RSA
cryptosystem.

● The next year, Biham and Shamir extended their
idea and used this method to attack DES and some
other symmetric ciphers.

● They tried to inject faults, and they used the
difference between faulty Ciphertext and fault free
Ciphertext. Thus, they called it Differential Fault
Attack (DFA).

Sharif University of Techology 4

History (cont’d)

● All previous techniques assumed very specific
models for fault location and value. Such attacks in
real world are applicable only with sophisticated
equipments such as narrow Laser beam.

● We present two general models for fault occurrence
in AES cryptosystem which neither of them needs
any sophisticated equipment.

● The first model covers 1.55% of all possible faults
between the beginning of AES-128 and the input of
MixColumns in round 9, and the reminder (98.45%
of them) are covered with the second one.

Sharif University of Techology 5

Fault Models

● We assumed any type of fault appears as a random data to
be added to the original data in the input of MixColumns of
the 9th round.

e

SubBytes ShiftRows MixColumns

RoundKey 9

SubBytes ShiftRows

RoundKey 10

Ciphertext

Fault
Injection

Sharif University of Techology 6

The First Fault Model

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•⊕⊕⊕•=
•⊕•⊕⊕=
⊕•⊕•⊕=
⊕⊕•⊕•=

⊕=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

000e2eee3'e
000e3e2ee'e
000ee3e2e'e
000eee3e2'e

AM

000e
000e
000e
000e

AM

43214

43213

43212

43211

4

3

2

1

● In the first model we suppose that at least one of
the bytes e1 to e4 is zero.

() (){ }4i1;0ee,e,e,e:FM i43211 ≤≤=∃= ε

Sharif University of Techology 7

The First Fault Model (cont’d)

● In other words, at least one byte of MixColumn (in one
column only) is fault free, but we don’t know any other
thing about occurred faults such as locations and values.
In consequence, this model covers one byte, two bytes and
three bytes fault(s) among four bytes of each column.

0155.0
1256

255
3
4

255
2
4

255
1
4

CR 4

32

1 =
−

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=

Sharif University of Techology 8

The Second Fault Model

● The second model is the complement of the first one i.e., in
the second model, all four bytes of one column should be
faulty.

● All four bytes of one column are influenced by the
occurred fault.

() (){ }4i1;0ee,e,e,e:FM i43212 ≤≤≠∀= ε

9845.0
1256

255CR 4

4

2 =
−

=

Sharif University of Techology 9

Fault Models

● All possible faults can be covered by one of the two
presented models and there is no fault that is not included
in one of these two models.

● The intersection of the two presented models is empty and
the union of them is all possible faults which can occur in
four bytes (2564 − 1).

● Any occurred fault in other units of the encryption
algorithm from the beginning of the algorithm up to
MixColumns of round 9 can be considered as another fault
occurred in MixColumns input of the 9th round, then it’s
coverable with one of the illustrated models. None of
previous fault models against AES had this capability.

Sharif University of Techology 10

Attack Methods

● At the first, we generate two set S1and S2. These two sets
can be generated using function MixColumns independent of
plaintext and key.

() (){
() () ()}'MixColumn;FMe,e,e,e:

,4i1;0'e'e,'e,'e,'e:'S

14321

i43211

εεε
ε

=∈∃

≤≤≠∀=

() (){
() () ()}'MixColumn;FMe,e,e,e:

,4i1;0'e'e,'e,'e,'e:'S

24321

i43212

εεε
ε

=∈∃

≤≤≠∀=

625,250,228,4255S

670,716,66255
3
4

255
2
4

255
1
4

S

4
2

32
1

==

=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Sharif University of Techology 11

Attack Methods (cont’d)
● After MixColumns of round 9 each byte of its output affects on

one byte of Ciphertext independent of other bytes, because the
MixColumns of round 10 is omitted. In fact it causes the success
of these attacks. As a result, we could consider each column of
MixColumns output in round 9 independently.

ShitfRows

Fault Injection

MixColumns

RoundKey 9

Round 9

SubBytes ShitfRows

RoundKey 10

Round 10

Sharif University of Techology 12

Attack Methods (cont’d)

● A : output of MixColumns in round 9, AddRK : AddRoundKey
()() 109 RoundKeyRoundKeyASubBytesShiftRowsCiphertext ⊕⊕=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕
⊕
⊕

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

44

33

22

11

'e
'e
'e
'e

9K
9K
9K
9K

,

A
A
A
A

AddRK

9K
9K
9K
9K

,

'eA
'eA
'eA
'eA

AddRK

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕
⊕
⊕

4

3

2

1

4

3

2

1

44

33

22

11

"e
"e
"e
"e

B
B
B
B

SubBytes

'eB
'eB
'eB
'eB

SubBytes

Sharif University of Techology 13

Attack Methods (cont’d)

● (e′′1, e′′2, e′′3, e′′4) presented on output of SubBytes does not
have any linear relation with (e′1, e′2, e′3, e′4) (errors on its
input). But each e′′i relates to only e′I and the non linearity
of this relation is very high. ShiftRows and AddRoundKey
are linear functions, thus (e′′1, e′′2, e′′3, e′′4) appears exactly
on Ciphertext but in (1, 14, 11, 8) locations respectively.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4

3

2

1

4

3

2

1

4

3

2

1

8

11

14

1

"e
"e
"e
"e

C
C
C
C

"e
"e
"e
"e

D
D
D
D

:ShiftRows

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕
⊕
⊕

4

3

2

1

8

11

14

1

8

11

14

1

8

11

14

1

48

311

214

11

"e
"e
"e
"e

10K
10K
10K
10K

,

D
D
D
D

AddRK

10K
10K
10K
10K

,

"eD
"eD
"eD
"eD

AddRK

Sharif University of Techology 14

Attack Methods (cont’d)

● We know that ε′′ is the difference at the output of SubBytes.
So, we generate set EI.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

8

11

14

1

8

11

14

1

4

3

2

1

FC
FC
FC
FC

FFC
FFC
FFC
FFC

"e
"e
"e
"e

() ()(){

}
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕
⊕
⊕

⊕

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

44

33

22

11

4

3

2

1

43214321

"e
"e
"e
"e

'eI
'eI
'eI
'eI

SubBytes

I
I
I
I

SubBytes

I,I,I,I:,'e,'e,'e,'e:'EI ιε

Sharif University of Techology 15

Attack Methods (cont’d)

● But all values of ε′ are not useful then we generate set I.

● In other words, set I contains all possible values for the
first column of SubBytes input at the last round. Thus, we
gather some faulty Ciphertexts caused by same plaintext
and different faults that are covered by the first model.
Then we will decrease the size of set I by repeating the
proposed method using collected faulty Ciphertexts until
set I has only one element. Now we know four bytes of
SubBytes input at the last round and we know the fault free
Ciphertext; thus, we can exploit the 10th roundkey.

() (){ }EI,'S';'I,I,I,I:SEII 143211 ∈∧∈∃=∩= ιεεει

Sharif University of Techology 16

Attack Methods (cont’d)

● One of the advantages of this attack is that finding every
four bytes of 10th Roundkey can be processed separately
and parallel. Also, we can employ four dedicated systems
that each one tries to find four bytes of K10.

● The other method to attack is completely similar to the
presented one but we assume occurred faults can be
covered by the second fault model and we use S2 for
limiting (e′1, e′2, e′3, e′4) in EI. All other specifications and
advantages of the first method are true for the second
method.

Sharif University of Techology 17

Experimental Results

● At the first, we implemented the
first method of attack. We started
with the first column of
MixColumn input in round 9 and
we selected faulty Ciphertexts that
all four bytes in 1, 14, 11 and 8
locations are different with fault
free Ciphertext. In this situation,
we ran the attack algorithm to 1000
encryption unit with different
random generated keys. In average
6 faulty Ciphertexts were needed to
find all four bytes of 10th
RoundKey and the needed time is
not considerable (10 seconds). 0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6
Round of Attack

L
o

g
 (

N
u

m
b

e
r

o
f

C
a

n
d

id
a

te
s

)

1 2 3 4 5 6

Sharif University of Techology 18

Experimental Results (cont’d)
● S2 has more elements and

calculating of intersection between
S2 and EI needs more time
comparing to the first method. On
the other hand, S2 needs 15.5 GB
memory. After improving,
optimizing and using memory
management techniques on the
implementation of the attack, we
succeeded to do it with 762.5 MB
memory and in almost 2 hours. We
should specify that the simulations
have been done using Visual C++
on a 2GHz centrino with 1GB
memory. We applied this attack to
AES with 100 random keys. Each
attack needed 1495 faulty
Ciphertexts and 2 hours in average
to find four bytes of K10. 0

2

4

6

8

10

12

1 123 245 367 489 611 733 855 977 1099 1221 1343 1495
Round of Attack

L
o

g
 (

N
u

m
b

e
r

o
f

C
a

n
d

id
a

te
s

)

1 123 245 367 489 611 733 855 977 1099 1221 1343 1495

Sharif University of Techology 19

Using Fault Attack
Assumption to Break AES

● In proposed methods we supposed faults occur only on
internal values, but we assumed RoundKeys and
KeyExpansion unit is completely fault free. As previously
described, any fault that happen before the MixColumns of
round 9 is coverable with one of our proposed fault
models.

● We can suppose fault occurred on the beginning of the
encryption algorithm means plaintext. Thus, changing in
plaintext that leads to different Ciphertexts can be assumed
as a fault that occurred in the plaintext and is covered by
one of our two models.

● Then that’s enough to know that the caused difference in
MixColumns input of round 9 is coverable with which of
our fault models.

Sharif University of Techology 20

Future Works
● We are working on designing a method to generate some

Ciphertexts that we know which model covers the difference
between each of them. Also, we are trying to construct a test
method to know the difference between two Ciphertexts at
MixColumns input in round 9 is coverable with which fault
models. Then, by finding any method or designing a rule, we
will break AES with 128-bit key and its period will be finished.

● Additionally, we don’t need to know plaintexts and if we can
find a method to distinguish and classify the different
Ciphertexts based on MixColumns input of round 9, we will
have a successful Ciphertext Only Attack and it’s not necessary
to run a Known Plaintext Attack.

Sharif University of Techology 21

Questions ?

